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We investigate the effect of noise on random Boolean networks. Noise is implemented as a probability p that
a node does not obey its deterministic update rule. We define two order parameters, the long-time average of
the Hamming distance between a network with and without noise, and the average frozenness, which is a
measure of the extent to which a node prefers one of the two Boolean states. We evaluate both order parameters
as function of the noise strength, and of the number of inputs per node K finding a smooth transition from
deterministic �p=0� to fully stochastic �p=1 /2� dynamics for networks with K�2, and a first-order transition
at p=0 for K�2. Most of the results obtained by computer simulation are also derived analytically. The
average Hamming distance can be evaluated using the annealed approximation. In order to obtain the distri-
bution of frozenness as function of the noise strength, more sophisticated self-consistent calculations had to be
performed. This distribution is a collection of � peaks for K=1, and it has a fractal sructure for K�1,
approaching a continuous distribution in the limit K�1.
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I. INTRODUCTION

Random Boolean networks �RBNs� �1,2� have been used
as a simple model for a variety of dynamical systems con-
sisting of interacting units, such as neural networks �3�, so-
cial networks �4�, and, more prominently, gene regulatory
networks �1,5�. RBNs are composed of Boolean nodes that
are coupled to each other. In the case of gene regulatory
networks, the Boolean state is a step-function approach to
the expression level of a particular gene. Despite this loss of
detail, the most important features of gene regulatory pro-
cesses are still captured in many cases, since they should not
depend on biochemical details, but on the desired sequence
of events in the cell �6�.

So far, the dynamics of RBNs have mostly been studied
using deterministic update rules. The dynamics of such mod-
els are nonergodic, with periodic attractor trajectories in state
space. Once the system has reached an attractor, it remains
there. Another important property of RBNs is a phase tran-
sition, which occurs when the number K of inputs per node is
changed. For unbiased networks, the dynamics exhibit a fro-
zen phase at K=1, where local perturbations die out quickly
and most attractors are fixed points, and a “chaotic” phase at
K�2, where perturbations increase exponentially fast and
attractors have very long periods. At the boundary K=2 be-
tween those two phases are the so-called “critical” networks,
where perturbations increase algebraically with time. Origi-
nally, it was suggested by Kauffmann �1� that such critical
networks are best suited to model real systems, which are
supposedly poised “at the edge of chaos.” In the meantime,
there is agreement that RBNs of all three types have only
limited validity when applied to real systems.

Real networks usually have some level of stochastic be-
havior, and for this reason several authors have investigated
RBNs under the influence of stochasticity. For instance, in

Ref. �7� the nodes of RBNs were updated in a completely
random order. This update method preserves the nonergodic-
ity of the system, and it is still possible to identify distinct
attractors. Attractors are in this case defined as sets of states
all of which are visited for a nonvanishing proportion of time
during the same trajectory. The stochastic update sequence
vastly reduces the number of attractors of critical RBNs,
which becomes a power law as function of the network size.
Similar results are obtained when the update sequence devi-
ates only slightly from a synchronous update �8�. Such a
power law was for a long time falsely believed to occur in
deterministic RBNs �1,9–11�.

Instead of introducing stochasticity into the update times,
other authors introduce it into the update functions. In �12�,
probabilistic Boolean functions are used, where a set of sev-
eral Boolean functions is assigned to each node, and at each
time step one of these is chosen randomly with a given prob-
ability. According to Ref. �12�, this model is more realistic
than models with a purely deterministic update scheme.

However, the most important way of introducing noise
into a RBN is in form of a “temperature,” leading often to
ergodic behavior. The effect of thermal noise on Ising spins
on a network was studied in Refs. �13,14�, where a “ferro-
magnetic” transition from the ordered to the disordered
phases was observed at a critical noise strength value. In the
language of gene regulatory networks, a temperature mani-
fests itself as fluctuations in the protein concentrations, so
that a gene may not always be turned on or off, given the
same expression state of the other genes �15�. This effect can
be included into models by allowing a deviation from the
deterministic update rule with a certain probability. In Ref.
�16�, for instance, a subset of nodes were perturbed in this
way �this corresponds to turning on the temperature for a
short time interval�, and the response of the dynamics to this
perturbation was evaluated, giving information about the ba-
sin structure of the system. Miranda et al. �17� studied the
effect of a permanently acting temperature by introducing a
fixed probability p that the state of a node becomes the op-
posite of what it should be according to the deterministic
update rule. They evaluated the average crossing time be-
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tween trajectories in state space which started from different
initial states as function of noise strength �17–19�. By sam-
pling the entire state space of small networks �N�20�, it was
found that the “barriers,” which correspond to the attractor
basin boundaries, can be crossed with nonvanishing prob-
ability when p�0, although the characteristic times may be
large. This means that the system is always ergodic. This
type of noise has also been studied for Boolean networks
with threshold functions, corresponding to a majority update
rule �20�. This system undergoes a second order phase tran-
sition at a critical noise strength from an ordered dynamical
phase, where all nodes assume the same value for the major-
ity of time, to a disordered phase where nodes assume both
states equally often.

In this work, we investigate the effect of ongoing stochas-
tic noise on RBNs. Following Refs. �17–19�, noise strength
is tuned via a probability p that a node does not obey its
deterministic update rule. We monitor the transition from
fully deterministic dynamics �p=0� to purely stochastic dy-
namics �p=1 /2� as the noise strength is varied. Differently
from Refs. �17–19�, we are interested in the behavior of the
networks in the limit of large system size, where it is impos-
sible to explore large parts of the state space. In order to
characterize the transition from zero to infinite temperature,
we define two order parameters: the long-time average of the
Hamming distance between a network with and without
noise, and the average frozenness, which is a measure of the
extent to which a node prefers one of the two Boolean states.
We find, both analytically and numerically, that this transi-
tion is continuous for K�2, and discontinuous at p=0 for
K�2, when the Hamming distance is considered. This dis-
tinction is a direct consequence of the phase transition from
frozen to chaotic dynamics in the deterministic model. The
frozenness shows a smooth transition for all values of K. The
distribution of frozenness shows a surprising richness in
structure, as revealed by computer simulations. For K�2
and for K�1, we succeeded in reproducing this structure as
function of p by analytical considerations.

The remainder of this paper is divided into the following
parts. In Sec. II we define the RBN model and the type of
noise used for our study. In Sec. III, we define the first order
parameter, the Hamming distance, and evaluate it numeri-
cally and analytically. In Sec. IV, we define the second-order
parameter, the frozenness, and evaluate it using computer
simulations and analytical considerations. Finally, we sum-
marize and discuss our findings in Sec. V.

II. MODEL

A Boolean network is defined as a directed network of N
nodes representing Boolean variables �� �1,0�N, which are
subject to a dynamical update rule

��t + 1� = f„��t�… , �1�

where the component f i of f is the update function assigned
to node i, which depends exclusively on the states of its
inputs. We introduce noise into the system through a prob-
ability p that a node does not obey its deterministic update
rule

��t + 1� = f„��t�…∨� n , �2�

where n is a random vector, with elements ni being 1 with
probability p and 0 otherwise. The symbol ∨� represents the
“exclusive or” Boolean operation. Hence, for p=0 the deter-
ministic behavior is recovered, and for p=1 /2 the dynamics
is completely stochastic.

RBNs are a special case of Boolean networks, where all
possible Boolean functions are assigned randomly to each
node with the same probability, and where the nodes are
randomly connected. The number of inputs of each node is
fixed at a value K. The random wiring leads to a Poisson
distribution with mean K for the number of outputs. When
updated deterministically, RBNs are in the frozen phase for
K=1. After a transient time, they reach an attractor where all
nodes �or all nodes apart from a small number� are perma-
nently frozen in one of the two Boolean states. Networks
with larger K have also a frozen core of nodes for p=0, and
the nodes belonging to it become frozen after a transient
time. For K=2, all but of the order of N2/3 nodes belong to
the frozen core. With increasing K, the frozen core contains
an ever smaller proportion of nodes. For K=2, the nonfrozen
part of the network consists of several independent compo-
nents. Each of these components contains a set of relevant
nodes, which are connected such that there is at least one
feedback loop among them, and “trees” of nonfrozen nodes
which are rooted in the relevant nodes and which are slaved
to the dynamics of the relevant nodes.

III. AVERAGE HAMMING DISTANCE

A. Definition

We use the average in time of the Hamming distance be-
tween the states of two copies of a network in order to quan-
tify the effect of noise on the dynamics. Consider a given
network in the initial state ��t=0�, and an exact replica,
which is initially in the same state, ���t=0�=��t=0�. The
dynamics of both networks are evolved in parallel, but noise
is applied only to ���t�, as in Eq. �2�. The mean Hamming
distance h�t� between the two networks is defined as

h�t� =
1

N
�

i

�	�i�t� − �i��t�	
 , �3�

where �¯
 denotes the average over several independent re-
alizations of the dynamics.

The long-time average h of the Hamming distance is de-
fined as

h = lim
T→�

1

T

1

N�
t,i

	�i�t� − �i��t�	 . �4�

If the trajectories become completely uncorrelated after some
time, we have h=1 /2. If the trajectories remain closer in
state space, we have h�1 /2. The case h�1 /2 does not
occur in our model and is therefore not considered in this
paper.
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B. Annealed approximation

We will first evaluate analytically the Hamming distance
by using the so-called annealed approximation �21�. This is a
mean field theory, which neglects correlations between nodes
and the finite size of the network. The annealed approxima-
tion corresponds to the behavior of a �infinitely large� net-
work where all the edges are randomly rewired at each time
step. Within the annealed approximation, the dynamics of a
RBN without noise �i.e., for p=0� is fully specified by the
parameter 	, called the average sensitivity of the network,
which is K times the probability that a node changes its state
when one �or more� of its inputs is flipped. For RBNs, we
have 	=K /2, since for any input combination, there is an
equal probability that the output of a function will be either 0
or 1. When considering two replicas of a network, 	 is iden-
tical to the mean number of nodes that assume a different
state in the two networks at time t=1 when at time t=0 the
state of only one node was different.

At any time, the Hamming distance between a network
with noise and its twin noiseless counterpart, as described by
Eq. �3�, is simply the fraction of nodes which were changed
by noise or by the effect of previously changed nodes. The
time evolution of h�t� can then be described as the evolution
of the population of flipped nodes. �A node in the replica
with noise is called “flipped” if its state deviates from the
state it has in the replica without noise.� Let q(h�t�)=1− �1
−h�t��K denote the probability that a node has at least one
flipped input. Then the probability h�t+1� that a node is
flipped at time t+1 can be written as

h�t + 1� =
	

K
q�1 − p� + �1 −

	

K
�pq + �1 − q�p

=
	�1 − 2p�

K
�1 − �1 − h�t��K� + p , �5�

where the first term in the first line corresponds to the pro-
portion of nodes that are flipped by previously flipped nodes
�and are not flipped back by noise�, and the second and third
term are the proportion of nodes that are flipped by noise
�with or without inputs being flipped�. The fixed point of Eq.
�5� determines the order parameter h, for given K and p. We
evaluated this fixed point numerically. Figure 1 shows h as
function of the noise strength p for several values of K. The
solid lines are the fixed point solutions of Eq. �5�, the sym-
bols represent the result of computer simulations of
quenched RBNs. The agreement between the annealed ap-
proximation and the real networks is very good.

The most striking feature of Fig. 1 is the existence of a
first-order transition at p=0 for K�2. This is due to the
phase transition to “chaotic” behaviour for K�2. In chaotic
networks, even the smallest local perturbations have a global
effect.

C. The Hamming distance on subsets of nodes

We next evaluate separately the Hamming distance for the
frozen core and for the nonfrozen part of the network. Figure
2 shows the long-time Hamming distance, evaluated only for
the nodes that belong to the frozen core. These curves can be

fitted using the annealed approximation Eq. �5� under the
condition that the factor 	 /K on the right-hand side of Eq.
�5� �representing the probability that a node is flipped when
at least one input is flipped� is replaced with 	eff /K, with 	eff
being used a fit parameter. Its value does not correspond to
the average sensitivity of the whole network, since we con-
sider only those nodes that have a specific dynamical behav-
ior in common. It represents instead an “effective” sensitivity
of those nodes, at least as far as the Hamming distance analy-
sis is concerned.
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FIG. 1. �Color online� Average Hamming distance as a function
of noise strength for RBNs of size N=104 for different values of K.
Each point was obtained by averaging the results over three differ-
ent network realizations, with a total of 300 networks per value of
K. Each average was computed over a time of 103 iterations after
the transient. The solid lines are the respective steady-state solu-
tions of Eq. �5�.
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FIG. 2. �Color online� Average Hamming distance as function of
noise for RBN of size N=104 for different values of K. Only nodes
belonging to the frozen core of the network �without noise� were
considered. Each point was obtained by averaging the results over
three different network realizations, with a total of 300 networks per
value of K. Each average was computed over a time of 103 itera-
tions after the transient. The solid lines are the respective solutions
of Eq. �5�, with 	eff being used as a fit parameter.
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For K=1 and 2, the frozen core is virtually indistinguish-
able from the rest of the network, and 	eff=	, but for K�2,
	eff decreases with increasing K. The reason is that the frozen
core becomes composed mainly of nodes with constant func-
tions which have 	eff=0.

Before evaluating h for the nonfrozen nodes, let us con-
sider the simplest possible connected set of nonfrozen nodes,
which is a simple loop. For K=1 and K=2, such simple
loops of nonfrozen nodes play an important role at determin-
ing the attractors with periods larger than 1 �22�, however, a
considerable fraction of K=2 networks also have more com-
plex relevant components. The effect of noise on such loops
is very different from its effect on the frozen core, since if
one of its nodes is flipped, this flip propagates indefinitely
around the loop. One can calculate the accumulation of flips
on such loops by considering the average Hamming distance
at a given time between a loop without and with noise

h�t� = �
i=0

� t−1
2 � � t

2i + 1
�p2i+1�1 − p�t−�2i+1�

 �
i=0

� t−1
2 �

�tp�2i+1e−tp

�2i + 1�!


1

2
�1 − e−2tp� . �6�

The first equation evaluates the probability that a node has
been flipped an odd number of times, and the subsequent
transformations are valid for t�1. The Hamming distance
approaches the value 1 /2 with an exponential decay, and
with an characteristic time 
=1 / �2p�.

We evaluated how fast a trajectory leaves an attractor in
the presence of noise by first letting the system approach an
attractor and by then turning on the noise and measuring the
Hamming distance h�l� to the initial state after one attractor
period l. This is identical to the distance from the state of the
noiseless replica, which returns to the initial state at time l.
Figure 3 shows the values of h�l� for RBNs with different
values of K. For K=1, the data match Eq. �6� very well, since
the nonfrozen part of the network in this case can only be
composed of simple loops. For K�2, the data points are
considerably above this exponential curve because a node
can become flipped via many different paths. The data are
better fitted using Eq. �5�, in particular for long periods �i.e.,
large times�. Just as for the case of the frozen core, 	eff was
used as a fit parameter.

For smaller values of the attractor period, the data are
considerably below the fitted line. The reason is that these
attractor periods are much smaller than typical attractor pe-
riods, and networks with such short attractors are not char-
acteristic of the ensemble, but have a state-space structure
with a smaller set of recurrent states. Consequently trajecto-
ries diverge less fast than in typical networks.

IV. FROZENNESS

A. Definition

The “frozenness” of a network measures the extent to
which the nodes spend more time in one of the two Boolean
states. It is zero, when the nodes spend the same time in both

states, and it is 1 when the network is frozen. The frozenness
of node i is defined by the expression

�i = �q0
�i� − q1

�i��2, �7�

where q�
�i� is the proportion of time node i is in state �,

q�
�i� = lim

T→�

1

T�
t=0

T

��i�t�,�
. �8�

By eliminating one of the two probabilities from Eq. �7�, we
obtain

�i = �2q�
�i� − 1�2, �9�

where � is either 0 or 1.
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FIG. 3. �Color online� Average Hamming distance h�l� of the
relevant components of RBNs with different values of K, after a full
period l, with p=0.01. The curves were obtained by sampling at
least 2104 attractors of several distinct RBNs of sizes N=102, 50,
and 25 for K�2, 3, and 4, respectively. The solid lines are given by
Eq. �6� for K=1 and Eq. �5� for K�2.
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FIG. 4. �Color online� Frozenness as function of noise strength
for RBNs of size N=104 for different values of K. Each curve was
obtained by averaging the results for 100 different network realiza-
tions. The solid lines correspond to the averages of ���� 	K , p�,
obtained in Secs. IV B–IV D, for K=1, 2, and �3, respectively.
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The frozenness ��
 of the network is obtained by averag-
ing over the nodes. Figure 4 shows the frozenness ��
 as
function of the noise strength p obtained by computer simu-
lations of networks of size 104, for different K.

At p=0, the frozenness corresponds obviously to the size
of the frozen core, and it decreases towards 0 as the noise
strength approaches the value 0.5. In order to derive these
curves analytically, the annealed approximation is of no use,
since a network that is rewired during the course of time has
very small frozenness, which is due uniquely to the constant
functions. Therefore, a simple analytical calculation, which
does not require the consideration of correlations between
nodes, can only be performed for nodes with constant func-
tions: for such nodes the frozenness is given by

�i = �1 − 2p�2. �10�

In the following, we will present more advanced analytical
evaluations and further computer simulations for RBNs with
different values of K.

B. K=1

For K=1 there are only 221
=4 possible Boolean func-

tions, two of which are constant �1 or 0�, and the remaining
ones are the copy �f���=�� and invert �f���= ¬�� functions.
As far as the analysis of frozenness is concerned, there are
only two distinct functions, constant and nonconstant, since
the output value is not relevant, but only how often it
changes. Since each of the two types of functions occurs
equally often in a K=1 RBN, we have 	=1 /2, but K=1
networks with other values of 	 can also be constructed.

In a network with K=1, each node has only one input, and
this input node also has one input, etc. In order to evaluate
the probability that a node is flipped, one only needs to con-
sider the chain of those nodes that can have an influence on
the considered node. Nodes with constant functions present a
barrier to the propagation of a perturbation, since they do not

respond to a change in their inputs, and therefore the chain
ends �or, more precisely, begins� at a node with a constant
function.

Without loss of generality, we define q�i� as being the
proportion of time node i assumes its most frequent value

q�i� � max�q�
�i�,1 − q�

�i�� � �1/2,1� . �11�

Since the value of q�i� is fully determined by the distance of
node i to a node with a constant function, we choose the
label i in the remainder of this subsection to signify this
distance. If the node itself has a constant function, we have
i=0, if the node has a nonconstant function, but its input has
a constant function, we have i=1, etc.

The value of q�0�, i.e., for nodes with constant functions, is
simply

q�0��p� = 1 − p . �12�

For larger values of i, we have the recursion relation

q�i� = �1 − p�q�i−1� + �1 − q�i−1��p =
1

2
�1 − 2p�i+1 +

1

2
,

�13�

where the solution of the recursion relation was obtained
using Eq. �12�. The probability of finding a given q�i� in the
network is

pq�q�i�	p� = �1 − 	�	i = �1

2
�i+1

. �14�

The frozenness of the network is thus given by

��
�p� = �
i

pq�q�i�	p��1 − 2q�i��2, �15�

which is plotted in Fig. 4 and fits the curve for K=1 well.
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FIG. 5. �Color online� Distribution of the frozenness for differ-
ent values of the noise strength for RBNs of size N=105 for K=1
and T=104. Each curve was obtained by averaging over 100 differ-
ent network realizations. The solid lines are given by Eq. �20�.
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FIG. 6. �Color online� Distribution of the frozenness of nodes
for different noise strength for RBNs of size N=105 and for K=2
and T=104. Each curve was obtained by averaging over 100 differ-
ent network realizations. The solid lines show the values of
���� 	K=2, p ,104� according to Eq. �20�. The line segment corre-
sponds to a power law with an exponent 0.6.
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Although networks with K=1 have only a discrete set of
possible q values, the distribution of q values appears as a
continuum when determined by computer simulations. There
are two reasons for this. First, the data points for q close to
1 /2 �i.e. for � close to 0� are so close to each other that they
cannot be resolved, since a computer simulation uses a non-
vanishing bin size. Solving Eq. �13� for i, inserting the result
in Eq. �14�, and using the relation �q�q 	K=1, p�dq= pq�q 	K
=1, p� with dq=q�i�−q�i+1�, we obtain the probability density
function

�q�q	K = 1,p� � �2q − 1��ln 	/ln�1−2p��−1, �16�

with 	=1 /2 for RBNs. Thus, in the limit q→1 /2 the distri-
bution of 2q−1 follows as a power-law with an exponent
given by the above expression. The probability density of �
also decays as a power law, in the limit �→0, but with a
different exponent, since

����	K = 1,p� = �q���� + 1

2
�K = 1,p� dq

d�

� ��ln 	/ln�1−2p��−3/2. �17�

Second, a computer simulation averages only over a finite
amount of time, T, and therefore the measured values q� are
Gaussian distributed around the exact value q,

�̃q��q�	K = 1,T,q� 
1

��2�q/T�
e−�q� − q�2/2q/T, �18�

This dependence on T can be included in Eq. �14� to
obtain the probability density function for q

�q�q	K = 1,p,T� = �1 − 	��
i=0

�

	i�̃q��q	T,q�i�� . �19�

For the distribution of � values, we obtain

����	K,p,T� = �q���� + 1

2
�K,p,T� 1

2��
. �20�

Figure 5 shows the distribution of the frozenness for a
quenched network with K=1, for several values of p. It can
be seen that there is very good agreement with Eq. �20�. For
values of � larger than �0.01, one can resolve separate
peaks, each of them associated with a value �i �from Eqs.
�9� and �13��, broadened due to the finite averaging time �Eq.
�18��. For smaller values of �, the peaks merge and cannot
be resolved, as discussed before. The presence of fluctuations
significantly deviates some of the distributions from the ex-
pected power-law decay at small �. For p=0.01, the small
values of frozenness, which are not in agreement with the
theoretical result, are due to the existence of loops, which are
omitted in the analysis above. The probability that a node is
part of a nonfrozen loop tends to zero as the network be-
comes larger, and therefore these points vanish in the limit of
infinite system size.

C. K=2

As K becomes larger, the number of possible functions
grows very fast as 22K

, and a detailed analysis of the frozen-

ness, as was done for K=1, becomes more complicated. The
values of q are still discontinuously distributed, but their
number increases fast with K, due to the numerous combina-
tions of Boolean functions that can determine the q values of
the K inputs of a node and thus, in combination with the
node’s Boolean function, the q value of its output. Here we
will lay out the basic considerations needed to obtain the
distribution of q for all K�1, and we will obtain by numeri-
cal iteration the distribution for K=2. Without loss of gener-
ality, we redefine q as q�q�=1, i.e., the fraction of time a
given node has the value 1 �as opposed to Eq. �11�, which
simplified the case K=1�.

In general, the probability density function �q�q 	K=1, p�
needs to account for all possible recursive combinations of
output functions and their inputs. We can thus write the fol-
lowing self-consistent expression:

�q�q	K,p� = �
0

1

¯ �
0

1

�
f

pf��q�f� − q��
i=1

K

�q�q�i�	K,p�dq�i�,

�21�

where the sum is taken over all Boolean functions; pf is the
probability of the fth Boolean function �pf =2−2k

�, and

q�f� = �1 − 2p�q�f���q�i��� + p , �22�

where q�f���q�i��� is the value of q for a specific function f ,
given the values �q�i�� of its inputs, for i=1, . . . ,K.

Since Eq. �21� involves an expression q�f���q�i��� for all
Boolean functions, a general closed solution becomes unfea-
sible. However, for K=2 Equation �21� can at least be solved
numerically, since there are only 16 possible functions, given
in Table I. Equation �21� is then solved by iteration, until

TABLE I. Expressions of q�f��q1 ,q2� for all Boolean functions
for K=2. The Boolean expressions of each function is also given for
reference.

f f i��1 ,�2� q�f��q1 ,q2�

0 0 0

1 �1∧�2 q1q2

2 �1∧ ¬�2 q1�1−q2�
3 �1 q1

4 ¬�1∧�2 �1−q1�q2

5 �2 q2

6 �1−∨�2
q1+q2−2q1q2

7 �1∨�2 q1+q2−q1q2

8 ¬��1∨�2� 1−q�7��q1 ,q2�
9 ¬��1−∨�2� 1−q�6��q1 ,q2�

10 ¬�2 1−q2

11 �1∨ ¬�2 q�7��q1 ,1−q2�
12 ¬�1 1−q1

13 ¬�1∨�2 q�7��1−q1 ,q2�
14 ¬��1∧�2� 1−q1q2

15 1 1
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convergence to a self-consistent q distribution is obtained.
We started with the initial distribution

�q
0�q	K,p� =

1

2
��q − p� +

1

2
��q − �1 − p�� . �23�

In the end, we determined the final distribution ���� 	K
=2, p� by using Eq. �20�.

Figure 6 shows the distribution of � for simulated
quenched RBNs with K=2 for different values of p, com-
pared with the result of the numerical evaluation of Eq. �21�
as described above. There is a very good agreement between
the two types of results. The peaks correspond to prominent
values of the frozenness. The right-most peak is always due
to the constant functions, but large frozenness values are also
obtained for other functions. For instance, f1 assumes the
value 0 whenever both inputs are different. If both inputs
have q=1 /2 �i.e., �=0�, the value of qf=1 is �1−2p�1 /4+ p
and �= ��1−2p� /2+2p−1�2. This is the second main peak
of ���� 	2,0.4,104� �counted from the right end�. For
smaller values of p, the peaks are not discernible, and a
broad continuum appears, with a distribution that follows a
power-law with an exponent �0.6 as �→0. As T becomes
larger, it is expected that the continuous regions become
more and more discontinuous, as can be seen in Fig. 7,
which shows the theoretical prediction for larger times T.
Moreover, when the resolution is increased �see inset�, it can
be seen that peaklike regions which appear to be similar to
fluctuations around a single value of �, are in fact composed
of sharper peaks, which themselves are composed of other
peaks, building a fractal structure.

Another distinguishing feature seen in Fig. 6 is a sharp
transition at p=0, where the only two possible values of q
are 0 and 1, both of which amount to �=1, leading to the
variance ��

2 =0. For p�0 this abruptly changes, and a wide
range of values of q are possible, which discontinuously
leads to ��

2 �0. There is no such discontinuous transition for

other K values, but a continuous one �see following section�,
which makes the case K=2 special.

The function ��
 is obtained by performing the integral
������ 	K=2, p ,T�d�. As can be seen in Fig. 4, our calcu-
lation of this function agrees well with the results of com-
puter simulations.

D. K�2

For larger values of K, numerical solutions of Eq. �21�
become progressively more elaborate. We did not pursue the
task of writing the expressions of 256 function qf��q�i��� for
K=3 or of 65 536 functions for K=4. Instead, we perform in
the following an approximation that is good for a large num-
ber of inputs per node.

When K is large, the vast majority of Boolean functions
have the output 1 for approximately half the input combina-
tions. This means that almost all nodes have at their inputs q
values close to 1 /2. We therefore make the assumption that
the input values to each node are 1 and 0 with probability
1 /2 independently from each other. This means that for any
given function all input combinations are equally probable. It
then follows immediately that the possible q values are iden-
tical to the possible fractions of output values 1 in the truth
table of a Boolean function, and that the probability for a
given q value is

pq�q	K,p = 0� = 2−M� M

qM
� . �24�

Here, we have defined M =2K, and the possible q values are
thus multiples of 1 /M.

In the presence of noise, each output value is inverted
with probability p, implying that q is changed to q�=q�1
− p�+ p�1−q�= �1−2p�q+ p. We therefore have

�q�q	K,p� =
M

1 − 2p
pq�� q − p

1 − 2p
�K,p = 0� . �25�

For the frozenness � we obtain the distribution

����	K,p� =
M

2�1 − 2p���
pq���� + 1 − p

2�1 − 2p�
�K,p� .

�26�

Finally, one needs to take into account the effect of fluc-
tuations, exactly as was done for the previous cases

�q�q	p,K,T� = �
0

1

�q�q�	p,K��̃q�q	T,q��dq�, �27�

where �̃q�q 	T ,q�� is given by Eq. �18�. Figure 8 shows the
distributions of frozenness for K=4 and 5. In contrast to the
cases K=1 and 2, the peaks are less pronounced, and are
hardly visible. For K=3 �not shown� there are some peaks
which are still visible, specially for high values of p. There-
fore, the high-K approximation �27� is very good already for
K=4. Both distributions show the same power-law decay
���� 	K , p���−1/2. This is simply due to the fact that for
�→0 �q→1 /2� the shape of �q�q 	K , p� is essentially flat,
and thus ���� 	K , p��dq /d�=�−1/2 /2.
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FIG. 7. �Color online� Expected distribution of frozenness of
each node as function of noise for RBNs with K=2 and different
values of T. The curves represent Eq. �20�. The inset shows a zoom
into ���� 	K=2,0.4,T� for different values of T.
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The quality of our approximation can also be assessed by
comparing the analytical prediction for ��
 with the com-
puter simulations �Fig. 4�. We expect that the approximation
becomes even better for larger K.

V. CONCLUSION

We have investigated the effect of thermal noise on RBNs
by evaluating two order parameters, the long time average of
the Hamming distance between two networks and the aver-
age frozenness of the network. While for K=1 and 2 the
average Hamming distance increases continuously from 0 to
1 /2 as p increases from 0 to 1 /2 it has a jump at p=0 for
K�2 �see Fig. 1�. These findings are well reproduced by the
annealed approximation, and they are a consequence of the
transition from a frozen to a “chaotic” phase in the determin-
istic system. In the chaotic phase �occuring for K�2�, ini-
tially nearby trajectories become eventually uncorrelated.
The smooth increase of the Hamming distance towards the
value 1 /2 is compatible with what was found in Refs.
�17,19� for small networks.

The analysis of the average frozenness of the network
required more sophisticated calculations than the annealed
approximation, and revealed intricate details of the network
dynamics. For all values of K the probability distribution of
frozenness is a set of � peaks, which appear as Gaussian
peaks in the computer simulations due to the limited time
averaging �see Figs. 5 and 7�. For K=1, these peaks can be
obtained by considering the distance of nodes to nodes with
constant functions. For K�1, the analysis becomes a lot
more elaborate, due to the large number of Boolean functions
and the resulting vast number of possible combinations of
frozenness values for the inputs of each function. We ex-
plained the general method, and performed the actual nu-
merical evaluation for the case K=2. The � peaks show a
fractal structure, which emerges from the iterated recursion
relation for the possible frozenness values. The variance of
the frozenness distribution changes continuously with p for
all K�2, but for K=2 it has a jump at p=0, where the
variance changes discontinuously from 0 to a value larger
than zero. For larger values of K, the � peaks are so close to
each other that the frozenness distribution appears continu-
ous �see Fig. 8�, and in this limit we succeeded in performing
an approximate analytical calculation.

We do not find a phase transition at finite noise strength,
in contrast to Ref. �20�, where Boolean networks with thresh-
old functions following a majority rule were used. Such a
system undergoes a second-order phase transition from an
ordered “ferromagnetic” phase, where all nodes assume the
same value for the majority of time, to a disordered phase,
where the nodes assume both states equally often. The pres-
ence of an ordered phase is a direct consequence of the ma-
jority rule, and this transition is similar to that in a network
of Ising spins �13,14�. The order parameter in Ref. �20� was
defined as the average “alignment” s= 	�1−2�
	, which is 1 if
all nodes are in the same state. The order parameter s is only
meaningful in systems where the system is ordered in the
absence of noise, and where the symmetry between the states
with values 0 and 1 is broken, as in ferromagnetic spin sys-
tems. Otherwise, ��
 is a better order parameter, because it
captures disordered frozen phases, such as for K=1 in RBNs.
Of course, a phase transition in the value of s is always
accompanied by a phase transition in the value of ��
. The
opposite is not always true.

It is to be expected that real networks show some kind of
robustness to noise, since they must be able to carry out their
function in a noisy environment. As the results of this work
show, only for RBNs with K=1 do the order parameters
change slowly as noise is switched on. RBNs with K�1 fail
to exhibit robustness to noise, which is hardly surprising
given the random wiring of the system and the random
choice of functions. It will therefore be interesting to extend
the present study to networks with a more restricted set of
functions with more biological relevance, such as threshold
�23� or canalizing functions �24,25�. At least for some sets of
functions, one should expect a phase transition at a finite
noise strength, similar to the transition seen in Ref. �20�. The
survival of the “ordered” phase up to a certain noise strength
can be viewed as a certain type of robustness.

It remains to be seen how other network topologies �26�
and the incorporation of redundancy �27� change a network’s
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FIG. 8. �Color online� Distribution of the frozenness of nodes as
function of noise strength for RBN of size N=104 for different
values of K. Each curve was obtained by averaging the results for
100 different network realizations. The solid lines correspond to Eq.
�27�. The straight line for K=4 corresponds to a power law with
exponent −1 /2.
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response to noise. In Ref. �26�, it was shown that a scale-free
input distribution changes the average number and length of
attractors. In Ref. �27�, redundancy was introduced as func-
tional duplications of nodes in the network, which resulted in
greater robustness against random mutations of the update
functions. In both papers, only deterministic dynamics were
considered. The effects of these �or other more general� to-
pological and functional characteristics may strongly alter
the response of a network to thermal noise. Finding the gen-

eral conditions required for reliable dynamics in a stochastic
environment will be an important step towards a deeper un-
derstanding of the dynamical features of real networks.
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